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Data Analysis and Visualization:	

From Galileo’s Telescope to Exascale Computing	


Type 1A SN data 
courtesy Cal 

Jordan, UofC Flash 
Center	


“I have had my results for a long time, but I do 
not yet know how I am to arrive at them.”	


	
–Carl Friedrich Gauss, 1777-1855 
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400 Years of Visualization	


McCormick 	


et al., 1987	


Galileo, 1610	


John Snow, 1854	


  

Johnson 	


et al., 2007	
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Supercomputing: A Delicate Balance	


“Datasets being produced by experiments and simulations are rapidly 
outstripping our ability to explore and understand them” –Johnson et al., 2007. 

Storage performance 
doubles in 45 months!
40% annual increase!

Storage and Computation Rates over Time!

CPU performance 
doubles in 18 months!
60% annual increase!



The Data-Intensive Nature of Computing and Analysis	


Machine FLOPS (Pflop/
s) 

Storage B/W 
(GB/s) 

Flops per 
byte stored 

Bytes comp. per 
byte stored 

LLNL BG/L 0.6 43 O(10 4) O(10 3) 

Jaguar XT4 0.3 42 O(10 4) O(10 3) 

Intrepid BG/P 0.6 50 O(10 4) O(10 3) 

Roadrunner 1.0 50 O(10 5) O(10 4) 

Jaguar XT5 1.4 42 O(10 5) O(10 4) 

Normalized Storage / Compute Metrics	


-In 2001, Flops per bytes stored was 
approximately 500. Ref: John May, 2001.	
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“Analysis and visualization will be limiting factors in gaining insight from exascale data.”	

–Dongarra et al., International Exascale Software Project Draft Road Map, 2009. 



Today: Scientific Data Analysis in HPC Environments���

A linear, 
sequential 
pipeline where 
tasks mapped 
to 
architectures 
in fixed fashion 
is robust but 
not  
necessarily 
scalable.	
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Examples:	

2D statistical graphics using R	


3D scientific visualization using ParaView	

Scientific visualization using VisIt	




Scalable Analysis & Visualization: The 
Data Parallel Approach���

Treat analysis as any other parallel computation	


-Decompose the domain	

-Assign to processors	

-Combine local and global operations	

-Measure scaling and efficiency	

-Balance load, minimize communication	


“The combination of massive scale and complexity is such that high performance computers 
will be needed to analyze data, as well as to generate it through modeling and simulation.” 	

–Lucy Nowell, Scientific Data Management and Analysis at Extreme Scale, Office of Science Program 
Announcement LAB 10-256, 2010. 
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Integrate with simulation	




Parallel Volume Rendering	


Pressure at time-step 1530	


Angular momentum at 
time-step 1492	


Volume rendering of shock wave 
formation in core-collapse supernova 
dataset, courtesy of John Blondin, NCSU. 
Structured grid of 11203 data elements, 5 
variables per cell.	


Entropy at time-
step 1518	


Angular momentum at 
time-step 1403	


Entropy over 100 time-steps	
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Parallel Volume Rendering Refresher	


1.  Group data into 
blocks and 
assign blocks to 
processors.	


2. 	
Each processor 
casts rays 
through its data 
blocks and 
produces an 
image of its data.	


3. 	
These images have yet to 
be composed into a 
single, final image. 
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Benchmarking Performance	


Scalability over a 
variety of data, image, 
and system sizes. 	


Grid 
Size 

Time-
step 
size 
(GB) 

Image 
size 
(px) 

# 
Procs 

Tot. 
time 
(s) 

% I/O Read B/
W (GB/s) 

22403 42 20483 8K 51 96 0.9 
16K 43 97 1.0 
32K 35 96 1.3 

44803 335 40963 8K 316 96 1.1 
16K 272 97 1.3 
32K 220 96 1.6 

Volume rendering performance at large size is 
dominated by I/O.  	


End-to-End Study of Parallel Volume Rendering on the IBM Blue Gene/P. ICPP’09. 

Changing data file 
layout can improve 

I/O performance, 
shown by access 

pattern signatures 
and performance 

data.	
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Large Scale Parallel Image Compositing	


The final stage in sort-last parallel visualization algorithms:	

1.  Partition data among processes	

2.  Visualize local data	

3.  Composite resulting images into one	


Composition = communication + computation	


The computation is usually an alpha-blend called “Over”	

i =   ( 1.0  –  αold) * inew + iold 
α = ( 1.0  –  αold) * αnew +α old 

where i = intensity (R,G,B),  α = opacity	


A Configurable Algorithm for Parallel Image-Compositing Applications. Peterka et al., SC09 



11	


Direct-Send, Binary Swap, and Radix-k	


Radix-k: Managed parallelism and contention, no power of 2 limitations 	


Direct-send:  Parallel, contentious 	
 Binary swap: Low parallelism, limited to powers of 2	
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Radix-k: Configurable to Different Architectures	


- Increase Concurrency: More participants per group than binary swap (k > 2)	


- Manage contention: limiting k value (k < p)	


- Overlap communication with computation: nonblocking and careful ordering of operation	


- No penalty for non-powers-of two numbers of processes: inherent in the algorithm design	
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Radix-k at Scale	

       	
zoom = 3.0 	
zoom = 1.5 	
      zoom = 0.5	


3X – 6X 
improvement over 
optimized binary 
swap (with 
bounding boxes 
and RLE) in many 
cases. 64Mpix at 
32K processes can 
be composited at .
08 s, or 12.5 fps.	


Examples of volume rendering at the 3 zoom levels shown below	


Accelerating and Benchmarking Radix-k Image Compositing at Large-Scale. Kendall et al., EGPGV’10 



Large-Scale Parallel Particle Tracing	


Rayleigh-Taylor instability data courtesy 
Mark Petersen, Daniel Livescu, LANL	


Type IA supernova data courtesy George 
Jordan, UofC  FLASH Center	
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Parallel Particle Tracing Crash Course	


2. 	
Each voxel 
contains a 
velocity vector	


3. 	
Advect particles 
along velocity 
vectors.	


5. 	
Repeat 3, 4 

1.  Group data into 
blocks and 
assign blocks to 
processors.	


4. 	
Exchange 
particles among 
processes when 
they reach the 
block boundary.	




Strong Scaling Baseline Performance	


Thermal hydraulics flow. 134M cells, 8K particles.	

1,2,4,8,16 round robin blocks per process.	
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Virtual Environments for Science: Be the Data	
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Stereo Parallel Volume Rendering���

System 

Configuration 

Application 

Configuration 

OpenGL Main Program 

Dvc Library 

Display 

Stereo Image Pair 

Autostereo 

Display of Large-Scale Scientific Visualization. SPIE’09 

Stereo parallel volume rendering:  The server (BG/P) 
computes stereo pairs of volume-rendered images and 
streams them to the client, which runs the dvc library to 
display them remotely in autostereo.	


Display devices and interaction techniques bring 
virtual environments to scientific visualization. 

End-to-end frame times of 2 s. per frame were achieved 
over a 3-hour demo from Argonne to Austin, TX.	
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Rethinking Data-Intensive Analysis	


Ongoing, Future	

- Continue to collaborate with others in developing infrastructure for scalable analysis 
in other HPC subsystems	


- Strengthen collaborations with scientists to integrate analysis with applications	


- Continue to develop immersive interfaces and environments for science	


Conclusions	

- Exascale requires new thinking about analysis	

- HPC resources can be harnessed for scalable analysis	

- Scalable analysis is data-intensive: Moving data, transforming data, interacting with data	

- Detailed study of data movement, both network and storage, is needed	

- Virtual environments can help manage data complexity	
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“The purpose of computing is insight, not numbers.”	

	
–Richard Hamming, 1962 
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